Nonmyocyte ERK1/2 signaling contributes to load-induced cardiomyopathy in Marfan mice.

نویسندگان

  • Rosanne Rouf
  • Elena Gallo MacFarlane
  • Eiki Takimoto
  • Rahul Chaudhary
  • Varun Nagpal
  • Peter P Rainer
  • Julia G Bindman
  • Elizabeth E Gerber
  • Djahida Bedja
  • Christopher Schiefer
  • Karen L Miller
  • Guangshuo Zhu
  • Loretha Myers
  • Nuria Amat-Alarcon
  • Dong I Lee
  • Norimichi Koitabashi
  • Daniel P Judge
  • David A Kass
  • Harry C Dietz
چکیده

Among children with the most severe presentation of Marfan syndrome (MFS), an inherited disorder of connective tissue caused by a deficiency of extracellular fibrillin-1, heart failure is the leading cause of death. Here, we show that, while MFS mice (Fbn1C1039G/+ mice) typically have normal cardiac function, pressure overload (PO) induces an acute and severe dilated cardiomyopathy in association with fibrosis and myocyte enlargement. Failing MFS hearts show high expression of TGF-β ligands, with increased TGF-β signaling in both nonmyocytes and myocytes; pathologic ERK activation is restricted to the nonmyocyte compartment. Informatively, TGF-β, angiotensin II type 1 receptor (AT1R), or ERK antagonism (with neutralizing antibody, losartan, or MEK inhibitor, respectively) prevents load-induced cardiac decompensation in MFS mice, despite persistent PO. In situ analyses revealed an unanticipated axis of activation in nonmyocytes, with AT1R-dependent ERK activation driving TGF-β ligand expression that culminates in both autocrine and paracrine overdrive of TGF-β signaling. The full compensation seen in wild-type mice exposed to mild PO correlates with enhanced deposition of extracellular fibrillin-1. Taken together, these data suggest that fibrillin-1 contributes to cardiac reserve in the face of hemodynamic stress, critically implicate nonmyocytes in disease pathogenesis, and validate ERK as a therapeutic target in MFS-related cardiac decompensation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of β-arrestin2-dependent signaling in thoracic aortic aneurysm formation in a murine model of Marfan syndrome

Ang II type 1a receptor (AT1aR)-mediated activation of MAPKs contributes to thoracic aortic aneurysm (TAA) development in Marfan syndrome (MFS). β-Arrestin2 (βarr2) is known to mediate AT1aR-dependent MAPK activation, as well as proproliferative and profibrotic signaling in aortic vascular smooth muscle cells. Therefore, we investigated whether βarr2-dependent signaling contributes to TAA forma...

متن کامل

Cardiac remodeling in the mouse model of Marfan syndrome develops into two distinctive phenotypes.

Marfan syndrome (MFS) is a systemic disorder of connective tissue caused by mutations in fibrillin-1. Cardiac dysfunction in MFS has not been characterized halting the development of therapies of cardiac complication in MFS. We aimed to study the age-dependent cardiac remodeling in the mouse model of MFS FbnC1039G+/- mouse [Marfan heterozygous (HT) mouse] and its association with valvular regur...

متن کامل

Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...

متن کامل

Inhibition of transforming growth factor-beta signaling induces left ventricular dilation and dysfunction in the pressure-overloaded heart.

This study utilized a transgenic mouse model that expresses an inducible dominant-negative mutation of the transforming growth factor (TGF)-beta type II receptor (DnTGFbetaRII) to define the structural and functional responses of the left ventricle (LV) to pressure-overload stress in the absence of an intact TGF-beta signaling cascade. DnTGFbetaRII and nontransgenic (NTG) control mice (male, 8-...

متن کامل

MMP-2 regulates Erk1/2 phosphorylation and aortic dilatation in Marfan syndrome.

RATIONALE Aneurysm and dissection of the ascending thoracic aorta are the main cardiovascular complications of Marfan syndrome (MFS) resulting in premature death. Studies using mouse models of MFS have shown that activation of transforming growth factor-beta (TGF-β) and the concomitant upregulation of matrix metalloproteinases (MMPs) contribute to aneurysm development. Our previous study showed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCI insight

دوره 2 15  شماره 

صفحات  -

تاریخ انتشار 2017